Orthogonality Criteria for Compactly Supported Refinable Functions and Refinable Function Vectors

نویسندگان

  • Jeffrey C. Lagarias
  • Yang Wang
  • John J. Benedetto
چکیده

A refinable function φ(x) : Rn → R or, more generally, a refinable function vector 8(x) = [φ1(x), . . . , φr (x)]T is an L1 solution of a system of (vector-valued) refinement equations involving expansion by a dilation matrix A, which is an expanding integer matrix. A refinable function vector is called orthogonal if {φj (x − α) : α ∈ Zn, 1 ≤ j ≤ r} form an orthogonal set of functions in L2(Rn). Compactly supported orthogonal refinable functions and function vectors can be used to construct orthonormal wavelet and multiwavelet bases of L2(Rn). In this paper we give a comprehensive set of necessary and sufficient conditions for the orthogonality of compactly supported refinable functions and refinable function vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compactly supported tight and sibling frames with maximum vanishing moments

The notion of vanishing-moment recovery (VMR) functions is introduced in this paper for the construction of compactly supported tight frames with two generators having the maximum order of vanishing moments as determined by the given refinable function, such as the mth order cardinal B-spline Nm. Tight frames are also extended to “sibling frames” to allow additional properties, such as symmetry...

متن کامل

Dual Multiwavelet Frames with High Balancing Order and Compact Fast Frame Transform

An interesting method called Oblique Extension Principle (OEP) has been proposed in the literature for constructing compactly supported MRA tight and dual wavelet frames with high vanishing moments and high frame approximation orders. Many compactly supported MRA wavelet frames have been recently constructed from scalar refinable functions via OEP. Despite the great flexibility and popularity o...

متن کامل

Generalized interpolating refinable function vectors

Interpolating scalar refinable functions with compact support are of interest in several applications such as sampling theory, signal processing, computer graphics, and numerical algorithms. In this paper, we shall generalize the notion of interpolating scalar refinable functions to compactly supported interpolating d-refinable function vectors with any multiplicity r and dilation factor d. Mor...

متن کامل

A new factorization technique of the matrix mask of univariate refinable functions

A univariate compactly supported refinable function φ can always be written as the convolution product Bk ∗ f , with Bk the B-spline of order k, f a compactly supported distribution, and k the approximation orders provided by the underlying shift-invariant space S(φ). Factorizations of univariate refinable vectors Φ were also studied and utilized in the literature. One of the by-products of thi...

متن کامل

Construction of Multivariate Tight Frames via Kronecker Products

Integer-translates of compactly supported univariate refinable functions φi , such as cardinal B-splines, have been used extensively in computational mathematics. Using certain appropriate direction vectors, the notion of (multivariate) box splines can be generalized to (non-tensor-product) compactly supported multivariate refinable functions from the φi ’s. The objective of this paper is to in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000